4,802,165

1

METHOD AND APPARATUS Of DEBUGGING
COMPUTER PROGRAMS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention is directed to a method and apparatus
useful for debugging computer programs and in particu-
lar to a method which allows selective tracking of the
program by means of command line arguments without
the necessity of recompiling the program.

2. Prior Art

When a new computer software product is con-
ceived, there is a typical cycle or process that takes
place in the course of bringing the product to the mar-
ket. The programming cycle typically includes the con-
ception of the idea; design of the software to implement
the idea; coding of the program based on the system
design; initial testing in the development environment;
testing at the user site; and final release of the software
to the market.

For example, after an idea occurs for a software prod-
uct, system design takes place. This includes choosing
the language, the compiler and the debugger to use for
the product. Thereafter the programmer codes the pro-
gram based upon the system design. Testing at the de-
velopment side and in the user environment assures that
the program will work as designed. If successful the
product is released.

Normally the release of a software product depends
on meeting development deadlines. If defects or errors
(known as bugs) appear in the code, the product dead-
line will be missed. This is particularly likely if the bugs
are complex, subtle or otherwise difficult to find. Such
delays can cause a software product to fail in the mar-
ketplace. The present invention provides a debugging
tool as a means for meeting deadlines as well as a meand
for creating software that goes to market relatively free
of errors.

There are many problems with existing debugging
software tools. For example, programs are often de-
bugged through the use of print statements which the
programmer inserts throughout the program being de-
bugged. When a problem occurs in a program, the pro-
grammer inserts the print statements in essentially a hit
and miss way in order to try to locate the error. There
are several serious problems with this approach.

When the program first fails, there are normally no
print statements in the code that would indicate to the
programmer where to look for the error. Thus the pro-
grammer must either use some separate method to find
the general location of the error, or scatter print state-
ments at random throughout the program in the hope
that at least one print statement will provide some clues
about where the problem lies. Of course, the more sub-
tle the problem, the less likely the programmer is to
choose the proper location for a print statement on the
first try. Therefore, at the outset, at least, the program-
mer has no logical place to start the dubugging process.

In order to collect a significant amount of data from
which to look for symptoms of the error, the program-
mer must insert a large number of print statements after
the error has occurred. A great deal of time may be
spent creating these statements.

Certair: kinds of errors change their behavior depend-
ing upon the precise location and code. These errors
destroy parts of the object code which strongly effects
how the errors manifest themselves. For these kinds of

5

20

35

40

45

55

60

65

2

errors, inserting print statements may change the nature
cf the error or even rake it seem that the ersor has
disappeared. When the print statements are removed,
the error reappears. This kind of error can be extremely
frustrating to a programmer trying to track down the
ultimate cause of the bug.

The more print statements a programmer uses, the
more output is generated. As frequently happens, so
much output is generated that any significant informa-
tion is buried in a mass of unimportant details. Thus, the
programmer must always guess whether the benefits of
inserting a print statement outweigh the disadvantages
of creating unhelpful output.

Inserting print statements requires that all or part of
the program be recompiled and relinked which is again
a time consuming process. Likewise, when the pro-
grammer decides to remove a print statement, the pro-
gram must be recompiled and relinked again. This also
takes time. Once the print statement is removed it may
not be reinserted without recompiling. Thus, each inser-
tion or deletion of a print statement requires significant
time and effort.

Because of the time required to insert and delete print
statements, programmers are reluctant to experiment
with output. The programmer is always asking whether
the information obtained with a print statement is worth
the time involved in inserting and removing the print
statement.

It is difficult to keep track of what print statements
were used in previous debugging runs. There is no obvi-
ous record of print statements that the programmer
inserted or removed from one test run to another. This
makes it difficult to reproduce and evaluate previous
experiments.

When the programmer finds the cause of a bug, the
print statements which were inserted must be removed
or else they may hide or obscure operation of the pro-
gram. The programmer must also repeat the entire
cycle for each bug encountered.

In summary then, the use of print statements in de-
bugging is extremely time consuming and frustrating for
the programmer. It discourages spontaneous experi-
mentation during a development cycle and such experi-
ments if attempted are difficult to reconstruct. It may be
impossible to recreate the symptoms of a problem when
print statements are inserted and finally all work in
finding a bug is discarded once the bug is found. No
matter how many bugs a programmer finds, finding the
next bug is just as difficult as finding the first. No tools
are ever retained, reused or built upon in a logical sys-
tematic matter.

SUMMARY OF THE INVENTION

The present invention is a method of debugging a
program using machine command line arguments with-
out the necessity of recompiling the program. The
method includes the steps of preparing a plurality of
macros having corresponding expandable series of
source code instructions for selectively tracing the pro-
gram at selected program locations. The method further
includes selectively activating the macros to perform
corresponding tracing operations using command line
arguments. The macros may be enabled or disabled
without affecting the location of program code thereby
avoiding the loss of a bug as in prior arrangements. A
running count of macro calls and program line execu-
tions may be incorporated into the system.



